Method of Discrete Orthogonal Basis Restoration
نویسنده
چکیده
منابع مشابه
Image Analysis by Discrete Orthogonal Hahn Moments
Orthogonal moments are recognized as useful tools for object representation and image analysis. It has been shown that the recently developed discrete orthogonal moments have better performance than the conventional continuous orthogonal moments. In this paper, a new set of discrete orthogonal polynomials, namely Hahn polynomials, are introduced. The related Hahn moment functions defined on thi...
متن کاملSylvester Tikhonov - regularization methods in image restoration
In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization proble...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملSignal compression method for biomedical image using the discrete orthogonal Gauss-Hermite transform
A method is presented for the compression of biomedical images using in place of the discrete cosine transform (DCT) the discrete orthogonal Gauss-Hermite transform (DOGHT). The latter expands the signals on a basis of Gauss-Hermite functions instead of the cosine functions and leads, in many practical cases, to 2-3 times better compression for the same reconstruction error as the DCT. This is ...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017